R.L. Harris Project
Relicensing
Harris Action Team (HAT) Meetings
FERC No. 2628

September 20, 2018

Agenda

- 9:00 10:30 AM HAT 1 (Project Operations)
- 10:45 12:00 PM HAT 5 (Recreation) and HAT 4 (Project Lands)
- 12:00 PM Lunch (Provided by Alabama Power)
- 1:00 2:30 PM HAT 3 (Fish and Wildlife)
- 2:45 3:45 PM HAT 2 (Water Quality and Use)

HAT 1 Project Operations

Operating Curve Change Feasibility Analysis
 Study Plan

Safety Moment

In case of an emergency.....

- Designee will contact 911
- Exit locations
- Designated meeting area
- Location of AED

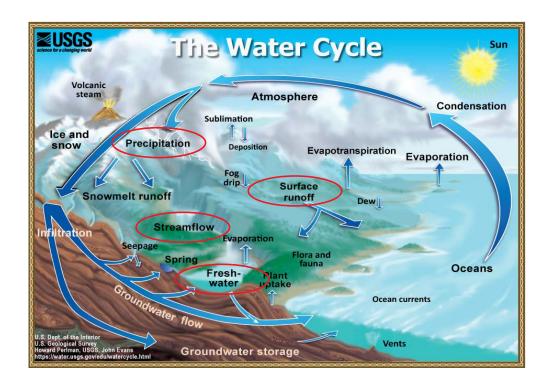
Role of Harris Action Teams

- Provides opportunity to participate in resource-specific teams
 - Get involved with issues important to you
 - Meet other stakeholders & understand their interests in the resources at Harris
- Provide technical expertise
- Review and comment on study plans, study reports
- You may be involved in more than 1 HAT

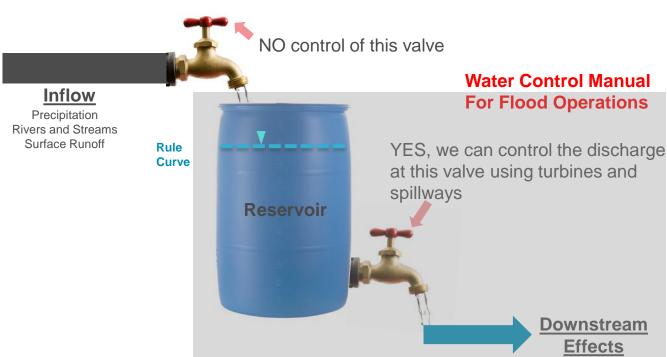
Harris Relicensing Project Operations – HAT 1

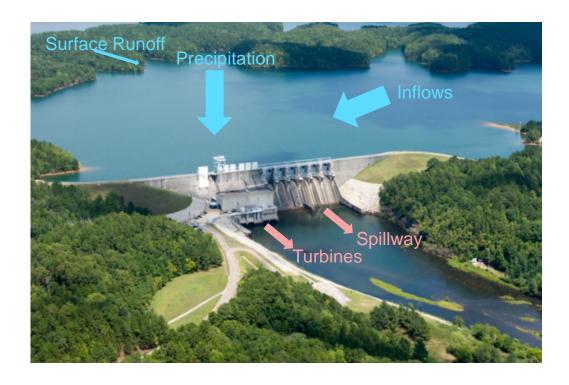
Overview of Study Models

September 20, 2018


A few things to remember during this presentation...

- Bolded RED letters highlight an acronym that stands for a U.S. Army Corps of Engineers'
 modeling software package such as RAS (River Analysis System) developed in their Hydrologic
 Engineering Center (HEC) in Davis, California. For example... this particular software package
 here would be called HEC-RAS
- This will be a broad overview of the software that we will be using to study the different options
 that affect project operations. For example... How does an increase in the winter pool affect
 project operations?
- Think of this overview like an auto mechanic showing you the tools they use to perform work
- We WILL NOT be discussing results. Why? Simply because, at this point, we don't have results. Up to this point it's been all about information gathering.
- DISCLAIMER: The list you see today may not be all-inclusive. We may find that other tools are
 needed as we go through this process and those will be announced at that time. Understand
 that any proposed changes must be approved by appropriate federal agencies.

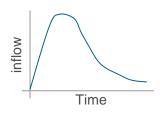

Let's start at the beginning...



Harris Reservoir Analogy

Let's focus our attention on Harris

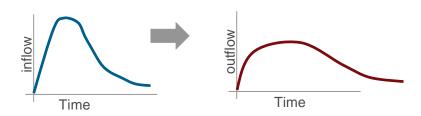
Determining Inflows


Modeling Inflows

- HEC-SSP Statistical Software Package
 - Software used for reading in time-series data and calculating flows for a specified flood event
 - EXAMPLE: Calculate the 100-year flood (a flood with a 1% chance of occurring in any given year based on a historical record)
 - DATA USED: Unimpaired flows database for Alabama-Coosa-Tallapoosa developed by the USACE
 - RESULTS used to develop the inflow *hydrograph* to the reservoir
 - Not just for the 100-year flood event, but a number of floods

Time	inflow (cfs)
8:00 am	1000
9:00 am	2000
10:00 am	3000
11:00 am	4000

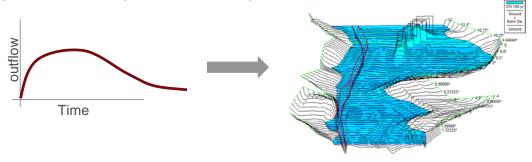
Determining Outflows



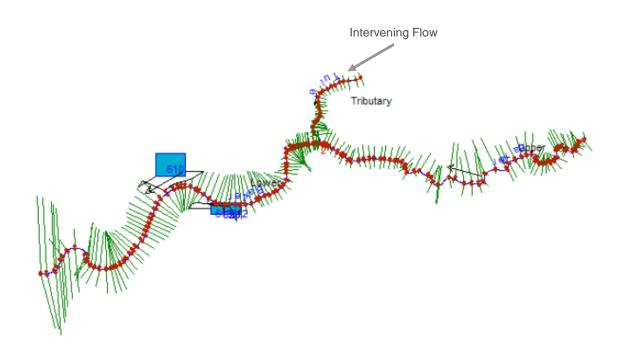
Modeling Discharges from Harris to the Tallapoosa River

- HEC-ResSim Reservoir System Simulation
 - Model used to route the inflow hydrograph (inflows) through the reservoir to the point of discharge below the dam
 - Handles the operations of the dam including:
 - Staying on rule curve
 - Turbines
 - Spillways
 - Water Control Manual (for flood control operations)
 - Compare existing operations to proposed operational changes

Tallapoosa Conditions from Harris Releases



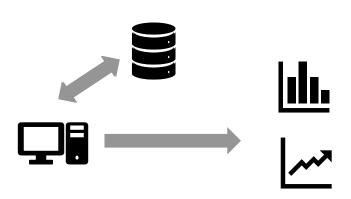
Modeling Discharges in the Tallapoosa River


HEC-RAS - River Analysis System

- This model is used to determine the downstream effects in the Tallapoosa River channel and floodplain resulting from flows released at the dam.
- This model can handle changes in flow like you would see if turbines were turned on/off or spillway gates being opened/closed. (Often referred to as unsteady flow.)
- Cross-section data at points along the Tallapoosa River, all the way to Martin, have been gathered using a combination of land surveying, LiDAR, and aerial surveys.
- Takes into account intervening flows, not just what is released from Harris
- Flood impacts will be compared to normal operations

Cross-sections on a river section

Storing all the data...



Storing dataset used in models

- HEC-DSS and HEC-DSSVue Data Storage System and Viewer
 - DSS A data storage system that stores input and output data for the models
 - DSSVue A viewer for graphing datasets stored in DSS
 - Also used to transfer data between modeling packages

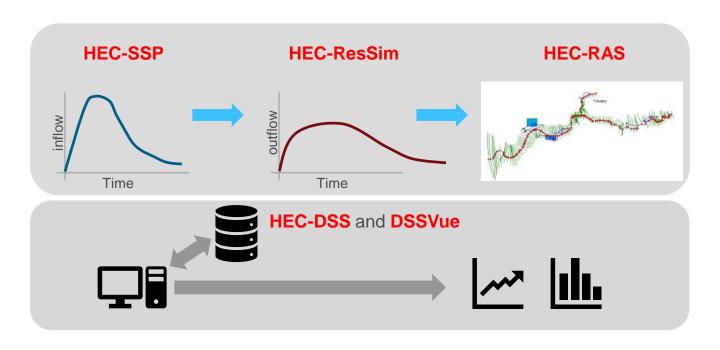
Other data sources

- U.S. Geological Survey
- National Weather Service
- U.S. Army Corps of Engineers
- Alabama Power Company

Modeling Summary Notes

Flood Studies

- Models will be used for a number of storm events, not just the 100-year flood
- Today's operation scheme is the BASE CASE
- Flood impacts from proposed will be compared to BASE CASE operations


These models may be used for other studies in the relicensing process, including, but not limited to:

- Flooding (not only for the 100-year flood event)
- Alabama-ACT Drought Response Operations Plan (ADROP)
- Navigation
- The Green Plan

ANY CHANGES and/or RISKS will be taken very seriously in the evaluation by FERC

Summary of the Process

APC Hydro Energy Model

- Proprietary model created by APC
- Based on over 60 years of operational data collected by APC
- Provides economic gains and/or losses associated with power generation based on proposed operational changes
- Compares existing with proposed
- Consideration of power generation and economics are a FERC requirement of the relicensing process so this step must be performed for <u>ANY</u> proposed operational change

Operating Curve Change Effects on Other Resources

Resource	Method							
	Lake Harris	Harris Dam to Horseshoe Bend						
Water Quality	 Phase 1 results Existing information CE-QUAL-W2 and HEC- ResSim 	 Existing information CE-QUAL-W2 to qualitatively evaluate potential effects on dissolved oxygen in the tailrace 						
Water Use	 Phase 1 results Existing information - Water Quantity, Water Use, and Discharges Report 	 Phase 1 results Existing information - Water Quantity, Water Use, and Discharges Report 						
Erosion and Sedimentation (including invasive species)	 Phase 1 results FERC-approved Erosion and Sedimentation Study LIDAR, aerial imagery, historic photos Quantitative and qualitative evaluation of areas most susceptible to increase in nuisance aquatic vegetation 	 Phase 1 results FERC-approved Erosion and Sedimentation Study LIDAR, aerial imagery, historic photos 						

Operating Curve Change Effects on Other Resources

>		

Resource	Method						
	Lake Harris	Harris Dam to Horseshoe Bend					
Aquatics	 Phase 1 results Existing information on the Harris Reservoir fishery 	 Phase 1 results CE-QUAL-W2 HEC-RAS Other FERC approved studies as appropriate 					
Wildlife and Terrestrial Resources- including T&E Species; and Terrestrial Wetlands	 Phase 1 results FERC-approved Threatened and Endangered Species Study GIS 	 Phase 1 results FERC-approved Threatened and Endangered Species Study existing wetlands data GIS 					
Recreation Resources	 Phase 1 results FERC-approved Recreation Evaluation Study LIDAR data 	 Phase 1 results FERC-approved Recreation Evaluation Study LIDAR data 					
Cultural Resources	Phase 1 resultsLIDAR, aerial imagery, and expert opinions	Phase 1 resultsLIDAR, aerial imagery, and expert opinions					

Operating Curve Change Feasibility Analysis

	2019				2020				2021			
TASK	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Phase 1 Modeling Analysis												
Initial Study Report												
Phase 2 Effects Analysis based on Phase 1 modeling												
Develop PM&E measures												
Updated Study Report												

Next Steps

October 1, 2018: Stakeholders file written comments on PAD, SD1 and any study requests (or comments on studies) with FERC

October 5-20: Alabama Power reviews comments on study plans and edits as appropriate

October 20-30: Potential HAT meetings (via conference call) to resolve comments

November 13, 2018: Alabama Power files study plans

December 13, 2018: Study Plan Meeting

