FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, DC 20426 August 10, 2020

OFFICE OF ENERGY PROJECTS

Project No. 2628-065 – Alabama R.L. Harris Hydroelectric Project Alabama Power Company

VIA FERC Service

Angie Anderegg Harris Relicensing Project Manager Alabama Power Company 600 North 18th Street Birmingham, AL 35203

Reference: Determination on Requests for Study Modifications for the R.L. Harris Hydroelectric Project

Dear Ms. Anderegg:

Pursuant to 18 C.F.R. § 5.15 of the Commission's regulations, this letter contains the determination on requests for modifications to the approved study plan for Alabama Power Company's (Alabama Power) R.L. Harris Hydroelectric Project No. 2628 (Harris Project). The determination is based on the study criteria set forth in sections 5.9(b) and 5.15(d) and (e) of the Commission's regulations, applicable law, Commission policy and practice, and Commission staff's review of the record of information.

Background

Commission staff issued the study plan determination (SPD) for the Harris Project on April 12, 2019. Alabama Power filed an initial study report (ISR) and associated draft study reports on April 10, 2020, held an ISR meeting on April 28, 2020, and filed an ISR meeting summary on May 12, 2020. Comments on the ISR and meeting summary were filed by Commission staff on June 10, 2020, and by Alabama Department of Conservation and Natural Resources, Alabama Rivers Alliance, David Bishop, Dana Chandler, Wayne Cotney, Chuck Denman, Albert Eiland, Nelson Hay, Sharon Holland, Carol Knight, Joe Meigs, David Royster, Ronnie Siskey, Mike Smith, Michelle Waters, and John Carter Wilkins on June 11, 2020. The Alabama Department of Environmental Management, the U.S. Environmental Protection Agency (EPA), and Donna Matthews

filed comments on June 12, 2020,¹ and the National Park Service filed comments June 29, 2020. Alabama Power filed reply comments on July 10, 2020.

Comments

Some of the comments received do not specifically request modifications to the approved study plan. This determination does not address these types of comments, which include: comments on the presentation of data and results; requests for additional information; disagreements on study results; recommendations for protection, mitigation, or enhancement measures; or issues that were previously addressed in either the November 16, 2018 Scoping Document 2 or the April 12, 2019 SPD.

Study Plan Determination

Pursuant to section 5.15(d) of the Commission's regulations, any proposal to modify a required study must be accompanied by a showing of good cause, and must demonstrate that: (1) the approved study was not conducted as provided for in the approved study plan, or (2) the study was conducted under anomalous environmental conditions or that environmental conditions have changed in a material way. As specified in section 5.15(e), requests for new information gathering or studies must include a statement explaining: (1) any material change in law or regulations applicable to the information request, (2) why the goals and objectives of the approved study could not be met with the approved study methodology, (3) why the request was not made earlier, (4) significant changes in the project proposal or that significant new information material to the study objectives has become available, and (5) why the new study request satisfies the study criteria in section 5.9(b).

Alabama Power agreed with requests to modify its Water Quality Study, as discussed immediately below. As indicated in Appendix A, two additional study modifications were requested, one of which Alabama Power partially agreed to and is required with staff modifications. In addition, three new studies were requested, one of which is approved herein, with staff modifications. The bases for modifying the study plan or approving new studies are explained in Appendix B (Requested Modifications to Approved Studies). Commission staff considered all study plan criteria in section 5.9 of

¹ Alabama Department of Environmental Management (Alabama DEM) and Donna Matthews' comments were filed on June 11, 2020, just after close of Commission business at 5:00 p.m. EST. Section 385.2001(a)(2) of the Commission's regulations provide that any filing received on a regular business day after close of Commission business is considered filed on the next regular business day. Therefore, the comments by Alabama Department of Environmental Management and Donna Matthews are considered filed on the next regular business day, or June 12, 2020.

the Commission's regulations; however, only the specific study criteria particularly relevant to the study in question are referenced in Appendix B.

Water Quality Study

The draft Water Quality Study Report includes measurements of dissolved oxygen concentration and water temperature at a generation monitor located in the Harris Dam tailrace (3 years of data) and at a continuous monitor located about 0.5 mile downstream from Harris Dam (1 year of data). As requested by Alabama Rivers Alliance and other stakeholders, in its ISR reply comments,² Alabama Power agrees to collect additional water quality data in 2020 and 2021. Alabama Power provided a monitoring schedule for 2021 but did not do so for 2020 other than to say that monitoring began on May 4, 2020. Because the approved study plan requires Alabama Power to monitor dissolved oxygen and water temperature through October 31, the 2020 monitoring period should extend until October 31, 2020.

Threatened and Endangered Species Study

As noted in staff's comments on the ISR, the draft Threatened and Endangered (T&E) Species Study Report does not provide an assessment of T&E species populations and/or their habitats at the project, or a record of consultation with the U.S. Fish and Wildlife Service (FWS) regarding the need for field surveys for all of the species on the official T&E species list.³ In its reply comments, Alabama Power states that existing information is insufficient to determine some of the T&E species' presence/absence and habitat suitability in the project area. Alabama Power also states that it may conduct additional field surveys⁴ for T&E species and/or their potentially suitable habitat based on ongoing consultation with the FWS and Alabama Natural Heritage Program, and will provide documentation of this consultation in the Final T&E Species Report which will be filed in January 2021, per the approved study plan schedule filed on May 13, 2019.

² See Alabama Power's July 10, 2020 Reply Comments at 2. Alabama Power indicates that the continuous monitor was installed on May 4, 2020, and the tailrace monitor was installed on June 1, 2020.

³ See the official list of T&E species within the Harris Project boundaries (i.e., at Lake Harris and Skyline), accessed on July 27, 2018, by staff using the FWS's Information for Planning and Conservation website (<u>https://ecos.fws.gov/ipac/</u>) and filed on July 30, 2018.

⁴ Alabama Power confirmed it would complete T&E species field verifications by September 2020, per the approved study plan schedule.

Requested Variances

In the ISR, Alabama Power requests variances to the approved schedules for the Draft Recreation Evaluation Study Report and the Cultural Resources Study.⁵ Specifically, Alabama Power proposes to file its Draft Recreation Evaluation Study Report in August 2020, instead of June 2020, to allow time to complete two new recreation surveys, a Tallapoosa River Downstream Landowner Survey and a Tallapoosa River Recreation User Survey. Alabama Power also proposes to finalize the Area of Potential Effect (APE) for its Cultural Resources Study and file it with documentation of consultation in June 2020, which it did on June 29, 2020. No stakeholders objected to the requested variances and these changes to the approved study schedule will not affect the overall relicensing schedule. Therefore, the requested variances are approved.

Please note that nothing in this determination is intended, in any way, to limit any agency's proper exercise of its independent statutory authority to require additional studies.

If you have any questions, please contact Sarah Salazar at <u>sarah.salazar@ferc.gov</u> or (202) 502-6863.

Sincerely,

JOLM Wor

for Terry L. Turpin Director Office of Energy Projects

Enclosures: Appendix A – Summary of determinations on requested modifications to approved studies and new study requests

⁵ Alabama Power also requested a variance to the approved schedule for the Water Quality Study, proposing to submit its Clean Water Act section 401 water quality certification (certification) application to the Alabama DEM in April 2021, instead of as originally proposed in 2020. Section 5.23(b) of the Commission's regulations requires the application for certification to be submitted to the certifying agency within 60 days of issuance of the Ready for Environmental Analysis notice, which will occur post-filing. Accordingly, a variance for submitting the certification application prior to filing the license application is not needed.

Appendix B – Commission staff's recommendations on requested modifications to approved studies and new study requests

APPENDIX A

SUMMARY OF DETERMINATIONS ON REQUESTED MODIFICATIONS TO APPROVED STUDIES (see Appendix B for discussion)

	Recommending		Approved with	Not
Study	Entity	Approved	Modifications	Required
Requested Modifications to Approved Studies				
Downstream Release Alternatives Study	Commission staff, Alabama Rivers Alliance, EPA		Х	
Operating Curve Change Feasibility Analysis Study and Downstream Release Alternatives Study – Climate Change Assessment	Donna Matthews			Х
New Study Requests				
Battery Storage Feasibility Study	Alabama Rivers Alliance		Х	
Pre-and Post-Dam Analysis of Downstream Impacts	Chuck Denman			Х
Study of the Downstream River Using Historic, Pre- Dam Images	Donna Matthews			X
Current, Post-Dam Imagery				

APPENDIX B

STAFF RECOMMENDATIONS ON REQUESTED MODIFICATIONS TO APPROVED STUDIES AND NEW STUDY REQUESTS

Downstream Release Alternatives Study

Background

Alabama Power designed and constructed the Harris Project, which began operation in 1983, as a peaking project. Prior to 2005, Alabama Power, while operating in a peaking mode, would alternately generate electricity for part of the day, and store flow in the reservoir for the rest of the day.⁶ While storing flows, there would be no downstream flow releases into the Tallapoosa River other than a license required minimum release of 45 cubic feet per second (cfs), as measured at the United States Geological Survey (USGS) gage located 14 miles downstream at Wadley, Alabama.

In 2005, Alabama Power voluntarily modified project operation to provide downstream pulse flow releases ranging from 15 minutes to 4 hours in length during nongeneration periods for the benefit of the aquatic community downstream (called "Green Plan").

The goal of the approved Downstream Release Alternatives Study is to evaluate the effects of the current Green Plan and the historic peaking operation, along with alternative downstream releases, on environmental and developmental resources affected by the project. Throughout the study planning and implementation process, Alabama Power has requested that stakeholders provide alternative flow releases to model as part of the study.⁷

Requested Study Modification

The approved study plan requires Alabama Power to model four downstream release scenarios, including: (1) current operation (the Green Plan); (2) the project's historic peaking operation; (3) a modified Green Plan (i.e., modifying the time of day during which the pulses are released); and (4) a downstream continuous minimum flow of 150 cfs under a historic peaking operation scenario. Based on the findings in the draft Downstream Release Alternatives Study Report, in comments on the ISR, Commission

⁶ See Final Downstream Release Alternatives Study Report at 1.

⁷ See Study Plan Meeting Summary in the Revised Study Plan filed on March 13, 2019; the ISR Meeting Summary filed on May 12, 2020; and Alabama Power's ISR reply comments filed on July 10, 2020.

staff, the Environmental Protection Agency (EPA), and Alabama Rivers Alliance, request that Alabama Power evaluate additional downstream release alternatives. Commission staff request that Alabama Power model continuous minimum flows of 150, 350, 600, and 800 cfs under the historic peaking, Green Plan, and modified Green Plan release scenarios. EPA requests that Alabama Power evaluate: (1) the Green Plan with minimum flows; and (2) continuous minimum flows higher than 150 cfs. Alabama River Alliance requests Alabama Power evaluate the following downstream flow alternatives:

- 1. a variation of the existing Green Plan where the Daily Volume Release is 100 percent of the prior day's flow at the upstream USGS Heflin stream gage (rather than the current 75 percent);
- 2. a hybrid Green Plan that incorporates a downstream continuous minimum flow of 150 cfs;
- 3. releases from the Harris Project that match flow at the downstream USGS Wadley stream gage to the USGS Heflin stream gage to mimic natural flow variability; and
- 4. downstream continuous minimum flows of 300 and 600 cfs.

Comments on Requested Study Modification

In Attachment B of its reply comments, Alabama Power proposes to model the following five downstream release alternative model runs, in addition to the required four initial alternative model runs, for a total of nine alternative model runs:

- 1. a variation to the existing Green Plan where the Daily Volume Release is 100 percent of the prior day's flow at the USGS Heflin stream gage;
- 2. a 150-cfs continuous minimum flow with Green Plan releases;
- 3. a 300-cfs continuous minimum flow with historic peaking operation;⁸
- 4. a 600-cfs continuous minimum flow with historic peaking; and
- 5. an 800-cfs continuous minimum flow with historic peaking.

Alabama Power does not propose to model Alabama Rivers Alliance's requested alternative for a release from the Harris Project that mimics the natural flow variability in the Tallapoosa River. Alabama Power states that such operation would significantly reduce or eliminate use of the project for peaking. Moreover, Alabama Power states that the project's units are not capable of adjusting, to the extent necessary, to simulate natural

⁸ In the draft Downstream Release Alternatives Study Report, Alabama Power refers to the continuous minimum flow alternatives solely as minimum flows. To eliminate confusion, we recommend Alabama Power define the minimum flow alternatives, with regard to the associated operational scenario (e.g., 150-cfs continuous minimum flow with Green Plan operation).

river flows. Alabama Power also does not propose to model staff's requested range of minimum flows with the Green Plan (except 150 cfs) or modified Green Plan releases (with any flow). Alabama Power states that modeling one combination of a minimum flow (150 cfs) and Green Plan releases is adequate to determine the effect of this downstream release alternative on project resources.

Discussion and Staff Recommendation

The purpose of the Green Plan releases is to reduce the effects of peaking operation on the aquatic community, including habitat, in the Tallapoosa River downstream from Harris Dam. Monitoring conducted since initiation of the Green Plan in 2005 indicates that there has been an increase in shoal habitat availability, but the response by the fish community has been mixed (Irwin, 2019).

Alabama Rivers Alliance's request for a downstream release alternative, whereby releases from the Harris Project would mimic the Tallapoosa River's natural flow variability, which could benefit the habitat and aquatic community downstream from Harris Dam, would require a change in project operation from peaking to run-of-river. As detailed by Alabama Power in its July 10, 2020, comments,⁹ the turbine-generator units at the Harris Project are designed to be operated at best gate and are not capable of adjusting to the extent necessary to simulate natural river flows (i.e., it is unable to operate in a run-of-river mode). Operating the units in this manner would lead to cavitation, which would damage the units. Therefore, operating the Harris Project to mimic the river's natural flow variability under a run-of-river mode would likely require significant redesign and redevelopment of the project (e.g., structural modifications, intake redesign, turbine retrofits, etc.). Because run-of-river operation is not feasible at the Harris Project without a major redesign and redevelopment of the project, we do not consider it to be a reasonable alternative for further consideration as part of our eventual environmental analysis. Therefore, we do not recommend modifying the study to include a release alternative that mimics natural flow variability in the Tallapoosa River.

With respect to the modified Green Plan releases requested by staff, we no longer recommend that Alabama Power model continuous minimum flows with this release strategy because, other than shifting the time of day of the releases, the release characteristics, model results, and environmental benefits would be the same as those for the continuous minimum flows and the Green Plan release strategy being modeled.

As noted above, the current license requires Alabama Power to release flows from the project such that a 45-cfs minimum flow is provided at the downstream USGS Wadley streamflow gage. Incrementally higher minimum flows (e.g., 150, 300, 600, and

⁹ See Alabama Power's July 10, 2020 comments, Attachment B, page 2.

800 cfs) would provide additional wetted width, which could improve habitat availability between pulsing releases. Therefore, there is the potential for additional enhancement and protection that we will need to consider as part of our environmental analysis. Modeling a range of continuous minimum flows with the existing Green Plan releases would allow for an evaluation of flows that could improve downstream aquatic habitat. Therefore, in addition to the nine alternative model runs identified by Alabama Power,¹⁰ we recommend Alabama Power model three additional continuous minimum flows with the Green Plan releases (i.e., 300, 600, and 800 cfs).¹¹

Operating Curve Change Feasibility Analysis Study and Downstream Release Alternatives Study – Climate Change Assessment

Background

The approved study plan includes two operations-related modeling studies: an Operating Curve Change Feasibility Analysis Study and a Downstream Release Alternative Study. The respective objectives of these approved studies are to: (1) evaluate proposed incremental increases to the winter rule curve for Harris Lake; and (2) evaluate the effects of the historic peaking, existing Green Plan, and alternative downstream release alternatives, on environmental and developmental resources affected by the project.

Requested Study Modification

Donna Matthews requests that the Operating Curve Change Feasibility Analysis and Downstream Release Alternative Studies be modified to include additional modeling of the effect of climate change on flows and Harris Project operation. The additional modeling would use predictive data from climate change studies.

Comments on Requested Study Modification

No comments were filed on this requested study modification.

¹⁰ See Alabama Power's July 10, 2020 Reply Comments at Appendix B, page 2.

¹¹ These flows were selected because they are consistent with those minimum flows selected by Alabama Power for their historic peaking model runs.

Discussion and Staff Recommendation

We are not aware of any available climate change model or assessment, including the climate change assessment referenced by Ms. Matthews,¹² that would support, with any degree of accuracy and reliability, a prediction of water availability at the individual project level. However, there is historical streamflow data available for the Tallapoosa River upstream of, and downstream from, the Harris Project. This data can be used to evaluate whether climate change has resulted in any changes to hydrologic inputs over time at the project. Therefore, we do not recommend modifying either the Operating Curve Change Feasibility Analysis Study or Downstream Release Alternative Study to include additional modeling using predictive data from climate change studies.

¹² Ms. Matthews references U.S. Department of Energy (2017), which was cited in EPA's March 29, 2019 comments on Alabama Power's Revised Study Plan.

STAFF RECOMMENDATIONS ON REQUESTED NEW STUDIES

Battery Energy Storage Systems (BESS) Study

Background

Harris Lake is a storage reservoir in which flows are stored to supplement inflows from April through December. The daily discharge from the project is based on a percentage of flows measured at the upstream USGS Heflin gage (i.e., the Green Plan calls for daily discharge to be at least 75 percent of flows at Heflin). Hydropower is typically generated during hours when demand for electrical power is highest (i.e., peak energy), causing significant variations in downstream flows. Daily hydropower releases from the dam vary from 0 cfs during off-peak periods to as much as 16,000 cfs, which is approximately best gate,¹³ or the maximum turbine discharge.

The project has two turbine-generating units, rated at 67.5 megawatts (MW) each, which produce about 60 MW and have a hydraulic capacity of 8,000 cfs each at best gate opening. Lake elevations can vary 0.5- to 1.5-feet during a 24-hour period as a result of daily peak releases. Daily tailwater levels can vary significantly (up to 5 feet) because of peaking hydropower operations at Harris Dam, characterized by a rapid rise in downstream water levels immediately after generation is initiated, and a rapid fall in elevations as generation is ceased. Except during high flow conditions when hydropower may be generated for more extended periods of time, this peaking power generation scenario with daily fluctuating downstream flows is repeated nearly every weekday. Under the voluntary Green Plan, environmental flows are released through the turbines daily for short periods of time (i.e., 15 minutes to 4 hours).

Recommended New Study

In its comments on the ISR, Alabama Rivers Alliance requests a new study titled "Battery Storage Feasibility Study to Retain Full Peaking Capabilities While Mitigating Hydropeaking Impacts." The goal of the study is to determine whether a battery energy storage system (BESS) could be economically integrated at Harris to mitigate the impacts of peaking, while retaining full system peaking capabilities. Under such a scenario, the BESS would be used to provide power during peak demand periods, which would

¹³ In its reply comments, Alabama Power notes that the best gate setting is a permanent setting on the governor system to ensure that the control system will force a fast movement of the wicket gates to the best gate position thereby minimizing the time spent in the rough zone (i.e., an area on the operating curve in which flows that are less than efficient gate cause increased vibrations in the turbine and cavitation along the low-pressure surfaces of the turbine runner).

decrease the need for peak generation flow releases and reduce flow fluctuations downstream of the project. The objectives of the study are to evaluate battery type and size configurations, costs, and ownership options, as well as technical barriers to implementing BESS. The study would also assess how much operational flexibility could be provided by BESS and allow for more control of discharges downstream of the dam.

Alabama Rivers Alliance acknowledges that BESS at hydropower projects is a new field with no established methodologies. Alabama Rivers Alliance requests a desktop analysis to evaluate the feasibility of BESS at the Harris Project, including a preliminary cost/benefit analysis. Alabama Rivers Alliance estimates the cost of this study would be \$20,0000 to \$30,000.

Comments on the Study Request

Alabama Power did not adopt this study because it believes the system would have a high cost and the turbines at Harris Dam are not designed to operate in a gradually loaded rate over an extended period. Rather, the turbines are peaking units designed to quickly react to electrical grid needs. Restricted ramping may be possible; however, it would require replacement of both turbine runners at a cost in addition to the cost of the batteries. Alabama Power estimates the cost of one 60 MW-1-hour storage battery unit equivalent to the power of one turbine, would be \$36,000,000. A battery equivalent to the power of both turbines would be \$72,000,000. There would be additional cost for any necessary modification of the project turbine-generator units. (Alabama Power did not provide an estimate for the cost of modifying/replacing the turbine runners.) Alabama Power dismisses the feasibility of a smaller MW battery. Alabama Power states that a smaller MW battery, i.e., 5 MW, would not be large enough to make up the lost power in full ramping mode. A battery smaller than the turbine's efficient gate would not allow for full ramping of that turbine.

Discussion and Staff Recommendation

We reviewed Alabama Power's cost estimate for the installation of a BESS at the Harris Project. Alabama Power's cost of the battery is based on a 2018 National Renewable Energy Report which estimates the cost of a 60 MW, 1-hour reserve battery at \$601/kWh, or about \$36,0000,000 to be used in place of the MWs from one turbine at Harris (DOE, 2018). This cost does not include any modifications to the turbine-generator units, which would be necessary. In addition, a battery with 4 hours reserve storage may be necessary, because the Harris Project can generate up to 4 hours in peaking mode. The 2018 National Renewable Energy Report estimates the cost of a 60 MW, 4-hour reserve battery at \$380/kWh, or about \$91,0000,000 to mirror the MW

from one unit at Harris. This option would also require modification of the turbine runners at additional costs.

The goal of Alabama Rivers Alliance's study is to evaluate the feasibility of a storage system which could be economically implemented at the Harris Project. Such a study would require evaluating not only the cost of installing the battery units, but also the potential benefits to both developmental and non-developmental resources. Installing a BESS at the Harris Project has the potential to mitigate project effects on water levels in Harris Lake, and fluctuations in flows released downstream during peaking operations. Potential hydrologic changes could be achieved by spreading out the releases throughout the day/night rather than releasing most of flows during peak hours. Assuming the same daily volume of flow is released, installing one 60-MW battery to provide an equivalent amount of the power provided by one turbine-generator unit could reduce daily fluctuations in Harris Lake by half. Harris Lake water levels, which currently fluctuate up to 1.5 feet daily, could be reduced to 0.75 feet daily. Downstream releases during peaking could be reduced from 16,000 cfs to 8,000 cfs, and the tailwater surface elevation could be reduced by 2.8 feet.¹⁴ To consider the environmental benefits potentially associated with such changes in hydrologic conditions described above, the changes in releases from the project would have to be considered in the context of Alabama Power's approved Downstream Release Alternatives Study, which provides for identifying and evaluating Alternative Release scenarios.

Sections 4(e) and 10(a) of the Federal Power Act require the Commission to give equal consideration to all uses of the waterway on which a project is located. When reviewing a proposed action, the Commission must consider the environmental, recreational, fish and wildlife, and other non-developmental values of the project. We currently have insufficient information to evaluate the potential environmental benefits of a BESS. The cost of conducting the study, between \$20,000 and \$30,000, is relatively low and would provide information that does not already exist and is needed for our analysis.

Alabama Rivers Alliance's study methodology includes a description of operational flexibility associated with installing a range of battery sizes. Alabama Power did not consider a smaller battery because of the operational limits of the existing turbines. Alabama Power's analysis should not be limited to the existing turbines but should also consider the feasibility and cost of modifying or replacing a turbine necessary to support operation of a smaller battery, which may be more cost-effective and provide some environmental benefits. At minimum, the study should look at the costs and

¹⁴ The tailwater elevation below Harris dam is 667.7 feet msl when two units are operating and 664.9 feet msl when one unit is operating, a difference of 2.8 feet.

environmental benefits of replacing one 60 MW unit, as discussed above, and at least one smaller battery and its associated changes in project releases.

Alabama Rivers Alliance's study methodology includes a survey of battery cost estimates based on public resources, future projections for battery costs, and potential incentives to offset battery cost. Alabama Power used a 2018 Department of Energy Report which provides a reasonable methodology for estimating the cost of a technology which has not been widely implemented in hydropower. The cost of batteries, however, is rapidly decreasing,¹⁵ and future projections in the cost of a battery should be considered in the cost analysis.

In summary, we recommend that Alabama Power conduct a BESS Study, along with the Downstream Release Alternative Study. The Downstream Release Alternative Study should be amended to include at least two new release alternatives: (a) a 50 percent reduction in peak releases associated with installing one 60 MW battery unit, and (b) a proportionately smaller reduction in peak releases associated with installing a smaller MW battery unit (i.e. 5, 10 or 20 MW battery). Alabama Power should include in its cost estimates for installing a BESS any specific structural changes, any changes in turbine-generator units, and costs needed to implement each battery storage type. Finally, consistent with the Downstream Release Alternative Study Plan, Alabama Power should evaluate how each of these release alternatives (i.e., items (a) and (b) above) would affect recreation and aquatic resources in the project reservoir and downstream.

Change Analyses: Project Operation Effects on Environmental Resources in the Tallapoosa River Downstream from Harris Dam

Background

The purpose of the Erosion and Sedimentation Study relative to downstream resources is to identify problematic erosion sites and sedimentation areas on the Tallapoosa River downstream from Harris Dam as well as determine the likely causes. The plan calls for sites downstream of Harris Dam to be identified, including by stakeholders; documented by observation and video; and assessed for the location, extent, and potential causes of erosion or sedimentation. As outlined in the approved study plan, during Phase 1 of the Operating Curve Change Feasibility Analysis Study, Alabama Power modeled the effect of increasing the winter elevation of Harris Lake by 1-, 2-, 3-, and 4-feet on the ability to provide flood control and downstream releases, among other operational parameters. Information from the Erosion and Sedimentation Study will be used in Phase 2 of both the Downstream Release Alternatives Study and the Operating

¹⁵ The National Energy Research Laboratory reports that since 2018, battery costs have been reduced by about 15 percent, with further decreases expected.

Curve Change Feasibility Analysis Study to assess the effects of potential changes in project operation on resources downstream from Harris Dam, including erosion and sedimentation in the Tallapoosa River.

Recommended New Studies

Pre-and Post-Dam Analysis of Downstream Impacts

Chuck Denman requests a new study with the goal of analyzing pre-dam and postdam impacts on environmental resources downstream from Harris Dam, including flooding, erosion, and habitat changes to flora and fauna. Specifically, Mr. Denman requests the following information:

- 1. a storm runoff model comparing 25-, 50-, and 100-year 24-hour storm events.
- 2. use of available remote sensing materials to identify erosion by comparing the current river channel and islands' sizes and shapes with pre-dam conditions.
- 3. use of remote sensing to map flag grass¹⁶ and invasive plant communities to compare changes from pre-dam conditions.
- 4. review available materials from local individuals in the community, as well as fish and game and other resources to determine what effect the dam has had on downstream fish species and population sizes.

Study of the Downstream River Using Historic, Pre-Dam Images Overlaid onto Current, Post-Dam Imagery

Donna Matthews states that erosion is a significant and persistent concern that is problematic for landowners, flora, and fauna in and around the Tallapoosa River downstream from Harris Dam. Ms. Matthews requests that Alabama Power use existing aerial imagery¹⁷ and other available data to analyze changes in erosion, fisheries, and other environmental resources downstream from Harris Dam. As part of the study, Ms. Matthews requests that Alabama Power prepare a detailed geographic information system (GIS) map with existing information relating fish populations and other parameters in three dimensions (3D). The 3D GIS map would display presence/absence of species along the river length and during different decades, where data are available. Ms.

¹⁶ Staff assumes that "flag grass" here refers to a non-native plant in the genus *Acorus*, such as *Acorus calamus*, given that the range of the native *Acorus americanus*, or "American sweetflag," is northern United States and Canada (USDA, 2020).

¹⁷ Ms. Matthews filed an image of the Tallapoosa River in the Harris Project area from 1942 and provided a source for obtaining additional existing aerial imagery of the project area from 1950, 1954, 1964, and 1973.

Matthews states that the results could be used to evaluate the potential effects of future changes to downstream flow patterns.

Comments on the Study Requests

Alabama Power indicates that it is conducting many of the requested analyses as part of the approved study plan, including evaluations of how existing operation affects, and alternative operations may affect, erosion and sedimentation, nuisance aquatic vegetation, fisheries/aquatic resources, and water quality in the Tallapoosa River downstream from Harris Dam. Alabama Power also states that the approved Erosion and Sedimentation Study provides an adequate methodology to evaluate project-related effects on erosion and sedimentation downstream from Harris Dam. To support the Commission's cumulative effects analysis for soils and geologic resources (i.e., erosion and sedimentation), Alabama Power indicates that it intends to contact Ms. Matthews to obtain copies of the aerial images referenced in her study request and file them with the Commission.¹⁸

Discussion and Staff Recommendation

Mr. Denman and Ms. Matthews present their new study requests as collecting data on pre-dam conditions, which is not necessary with the context of the Commission's environmental baseline (i.e., current conditions) for evaluating project effects during a relicensing proceeding and does not relate to the eventual proposed action, which is relicensing an existing hydroelectric project.¹⁹ The images of the project area that Ms. Matthews identifies were all taken prior to the construction and operation of the Harris Project. Analysis of these images would not be helpful in evaluating project-related erosion.

The flood analysis component of the Operating Curve Change Feasibility Analysis is intended to assess the effects of a large-scale flood, which could address some of the existing stormwater runoff and erosion issues that Mr. Denman identifies in his proposed study. The Downstream Release Alternatives Study calls for Alabama Power to model potential changes in operational flow releases. Modeling these potential operational scenarios will support an analysis of flow effects downstream of Harris Dam under a range of scenarios more effectively than additional modeling of smaller floods. The 100-year flood serves as a representative large flood for risk assessment and planning purposes. Therefore, modeling the 100-year flood scenario is sufficient.

¹⁸ See Alabama Power August 4, 2020 Memo.

¹⁹ Am. Rivers v. FERC, 187 F.3d 1007, amended by and denying reh'g, 201 F.3d 1186 (9th Cir. 1999); Conservation Law Found. v. FERC, 216 F.3d 41 (D. C. Cir. 2000).

The data collected as part of the approved studies, including the Downstream Release Alternatives Study, Erosion and Sedimentation Study, Aquatic Resource Study, and Downstream Aquatic Habitat Study, include much of the information that Mr. Denman and Ms. Matthews request with regard to current conditions. The results of Phase 2 of the Downstream Release Alternatives Study that is being conducted currently (during the second study season, April 2020 through April 2021) will also provide information responsive to most of Mr. Denman and Ms. Mathews' requests. The information gained through the approved studies should be adequate to assess the effects of project operation on downstream resources, including erosion and sedimentation and related invasive species effects, fisheries, water quality and use, terrestrial resources, recreation, and cultural resources. Therefore, we do not recommend that Alabama Power conduct Mr. Denman's or Ms. Matthews' requested new studies.

LITERATURE CITED

- Irwin, E.R., ed. 2019. Adaptive management of flows from R.L. Harris Dam (Tallapoosa River, Alabama) – Stakeholder process and use of biological monitoring data for decision making: U.S. Geological Survey, Open-File Report 2019–1026. 93 p. access at <u>https://doi.org/10.3133/ofr20191026</u>.
- (USDA) U.S. Department of Agriculture. 2020. Plant Database, Plants Profiles: Acorus americanus (Raf.) Raf. and Acorus calamus L. Available at: <u>https://plants.sc.egov.usda.gov/core/profile?symbol=ACAM</u> and <u>https://plants.sc.egov.usda.gov/core/profile?symbol=ACCA4</u>, respectively. Accessed on July 31, 2020.
- (DOE) U.S. Department of Energy. 2018. U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Costs Benchmark, DOE's National Renewable Energy Laboratory, Technical Report NREL/TP-6A20-71714, November 2018.